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Abstract

An asymmetry between anticyclonic and cyclonic spiral eddies is observed in the

submesoscale regime. The predominant cyclonic rotation, reported e.g. by Munk et

al. (2000), is not fully understood yet and contrasts with a more symmetric balance

between cyclones and anticyclones observed for mesoscale dynamics.

In this study we investigate the connection between spiral surface flow pattern in

the ocean and their cyclonic rotation. We find that ageostrophic flow components in

submesoscale dynamics lead to smaller sized cyclones, with enhanced horizontal ve-

locity and pressure gradients. These sharpened horizontal gradients, which are not

geostrophically balanced yield enhanced vertical velocities. Spiral structures can

only evolve on a horizontally non-divergent velocity field and are thus also associ-

ated with enhanced vertical velocities, contrary to nearly two-dimensional mesoscale

dynamics. In contrary the submesoscale anticyclonic regions have less enhanced gra-

dients and vertical velocities and thus do not favour spiral structured eddies, but

closed, vortex-like structures similar to mesoscale dynamics.

To study different dynamical regimes from submesoscale to mesoscale and to verify

our hypothesis we use numerical simulations of the idealised python Ocean Model

(pyOM, Eden (2011)). Several experiments are performed with initial conditions

corresponding to mesoscale and submesoscale dynamics.

The simulated instabilities correspond to time and length scales predicted by linear

stability analysis and are similar to observed baroclinic instabilities. Especially the

cyclonic dominance in the submesoscale simulation is confirmed.

An analysis of pressure perturbation, relative vorticity and vertical velocities for

different dynamical regions confirms our hypothesis of the coherence of cyclonic ed-

dies and enhanced vertical velocities, as well as the different sizes of cyclones and

anticyclones in the submesoscale regime.
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1. Introduction

 

Figure 1.1.: Photograph of a spiral eddy street in the Mediterranean Sea off the coast of the

Egyptian/Libyan border (32.08N, 26.08E, north is upward). The diameter of the eddies is

roughly 10 km. From Eldevik and Dysthe (2002), originally from Scully-Power (1986)

In this thesis the process of baroclinic Mixed Layer Instabilities (MLIs), gener-

ating spiral eddies, is analysed with respect to their predominant cyclonic rotation

sense, reported for example by Munk et al. (2000) and Eldevik and Dysthe (2002).

At the beginning the importance of baroclinic instabilities in Mixed Layer (ML) dy-

namics is pointed out. This will be followed by an introduction to the phenomenon

of spiral eddies and the actual state of research concerning cyclone-anticyclone asym-

metry in ML dynamics. In the introduction into theory (chapter 1.3) the different

dynamical regimes are characterised. Furthermore theoretical arguments concerning
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1. Introduction

the initial question of cyclonic favor are introduced.

The ML, with its approximately homogeneity of properties in the vertical, plays

an important role in atmosphere-ocean interactions. Exchange of biogeochemical

tracers, implying different greenhouse gases such as anthropogenic CO2, buoyancy

and potential vorticity, between ocean and atmosphere, as well as their vertical

transport within the ML and beyond into the interior ocean, depends highly on ML

properties and dynamics.

The dominant dynamical processes acting in the ML were long time assumed to

be small scale turbulence and mesoscale motions, reducing vertical gradients and

decreasing horizontal inhomogeneities, respectively. Since models and observations

are able to capture also submesoscale ranges, which have spatial scales in between

the small- and the mesoscales, this point of view has changed. About fifteen years

ago, first studies (e.g Haine and Marshall (1998) and later on e.g. Boccaletti et al.

(2007)) pointed out the importance of submesoscale processes in restratifying the

ML and detected submesoscale dynamics as a leading order process for the buoyancy

budget of the ML. Furthermore submesoscale processes are responsible for vertical

transport of watermasses and thus also biogeochemical tracers below the ML into

the intermediate ocean (Thomas et al., 2008).

Lateral buoyancy gradients in the weak stratified vicinity of the ML are unstable

to submesoscale baroclinic processes (e.g. Boccaletti et al. (2007)). They restratify

the ML, in the way, that baroclinic instabilities evolve on strong horizontal density

gradients, deminishing this gradients and leaving vertical gradients instead. State-

of-the-art global models do not resolve submesoscale processes, hence miscalculating

ML properties (Boccaletti et al., 2007).

Understanding the process of submesoscale baroclinic instabilities will help to com-

prehend the restratification of the ML, thus helping to make better estimates of ML

properties, like temperature and buoyancy distribution as well as ML depth, which

is crucial to know for modeling ocean-atmosphere interactions.
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1.1. Spiral eddies

The second decisive role of Mixed Layer Instabilities (MLIs) may found in their

determining part in the energy cascade, which is not fully understood yet. Thomas

et al. (2008) suggest that submesoscale instabilities (which are mainly balanced and

well captured by hydrostatic equations, but arising on high Ro and low Ri) transfer

energy to the larger scales, through the effect of growing eddies. Whereas the real

ageostrophic instabilities (also called ageostrophic anticyclonic instabilities (AAI))

are more relevant to a forward energy cascade. It includes the transfer of energy

from the mesoscale flow field via submesoscale processes to the small scales, where

dissipation occurs (e.g. Molemaker et al. (2005) and Skyllingstad and Samelson

(2012)).

1.1. Spiral eddies

The phenomenon of spiral eddies has been detected first in 1968 from crewed space

flights, first thought to be a rare feature. Later spaceflights as well as satellite-born

synthetic aperture radar (SAR) and infrared measurements give further evidence for

high occurrence of submesoscale dynamics in general and spiral eddies in particular.

For a more detailed history of the discovery of spiral eddies the reader is referred to

Munk et al. (2000).

Already 40 years have passed since discovery, but the evolution process of spirals

is not yet fully understood. Nowadays spiral eddies are assumed to be the surface

signature of submesoscale baroclinic instabilities (compare e.g. Eldevik and Dys-

the (2002)). Spiral eddies occur globally, with the exception of the equator. They

belong to submesoscale dynamics implying horizontal scales of O(1km). They are

evolving in the ML, but can penetrate into the interior ocean, as has been shown

by Badin et al. (2011). The surface pattern of those instabilities can be seen in

figure 1.1. Typical for spiral eddies are shear lines with a width of roughly 100 m

and a spacing between them of O (1km) (Munk et al. (2000), Eldevik and Dysthe

(2002); seen in figure 1.1 as white lines). Those streaks are visible in sun glitter
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1. Introduction

pictures and SAR-images due to convergence of biogenic slick, which dampens short

wind-induced waves. The comparatively smoother sea surface leads to different

back-scatter behaviour of radar and sunlight waves. More detailed information on

the visibility of spiral eddies in remote sensing can be found again in Munk et al.

(2000).

Spiral eddies occur often in an interconnected pattern, as can be seen in figure 1.1.

Furthermore in some images a strong cyclonic displacement of ship tracks can be

observed (Munk et al., 2000). This is in agreement with the overwhelmingly cy-

clonic vorticity associated with spiral eddies (e.g. Munk et al. (2000), Scully-Power

(1986)).

1.2. State of research

Munk et al. (2000) analyse over 400 images of spiral eddies, resulting in a lot of in-

formation concerning length- and timescales introduced in section 1.1. Furthermore

they address the effect that makes spirals visible for remote sensing, additionally

ruling out that cyclonic dominance is just a visibility effect.

In the second part of Munk et al. (2000) the question of cyclonic favour is adressed.

Therefore the authors split the instability process into two separate simulations.

First they consider a preconditioning phase where frontogenesis takes place. Two

different front types are considered, an analytically softened Margules front and

a time-dependent model of a Hoskins-Bretherton front (Hoskins and Bretherton,

1972). In this stage larger shears evolve (super-f shear) on the cyclonic side of the

jet, than on the anticyclonic side. In a second process Munk et al. (2000) analyse

the barotropic wound up of the shear into a spiral by shear instability, based on the

Stuart solution (Stuart, 1967). The anticyclonic vortices experience the sub-f limit

by inertial and gravitational instabilities. A mixture of inertial and gravitational

instabilities, also called symmetric instability, arrises if absolute potential vorticity

Q ≤ 0. This means that symmetric instabilities arrise, when relative vorticity falls

below −f (compare equation 1.3). Summing up, Munk et al. (2000) found different
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1.3. Introduction into Theory

processes all favoring cyclonic vortices, but they did not figure out which one is the

limiting one for anticyclonic vortices.

In contrast Eldevik and Dysthe (2002) simulate the entire evolution process of spiral

eddies, reproducing cyclonic eddies consistent with observations and suggest spiral

eddies to be the surface signature of ageostrophic baroclinic instabilities. Further-

more they introduce a theoretical argument for the cyclonic-anticyclonic asymmetry,

which is shown and discussed below (compare eq. 1.6 and 1.7).

Roullet and Klein (2010) also revealed cyclonic dominance in a numerical simula-

tion, explaining it due to active upper boundary effects, but lacking an explanation

for the dominance beyond numerical simulations. They declare to find cyclonic

dominance in contrast to previous studies referring to publications experiencing an-

ticyclonic dominance like e.g. Koszalka et al. (2009), who are not describing an

instability process emerging from a density front, but wind-forced turbulence of an

initial resting fluid and e.g. Cho and Polvani (1996), whose simulations are not in

the submesoscale range.

Studies concerning cyclonic-anticyclonic asymmetry can be found in meteorology as

well (e.g. from observational data by Klein (1958)). Hakim et al. (2002) reproduce

the tropopause cyclone-anticyclone asymmetry in size and strength in numerical

simulations, by including ageostrophic terms in a surface QG approximation. An

indication that spiral cyclones in the ocean also differ in size and strength from their

anticyclonic counterparts is given by a regional study in front of the Norwegian coast

(Dokken and Wahl, 1996).

1.3. Introduction into Theory

Submesoscale dynamics

Various definitions of submesoscale and ageostrophic dynamics are used, and in

literature often ageostrophic is used synonymously with submesoscale, which leads

to some confusion. We use the following definition of submesoscale dynamics. The
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1. Introduction

submesoscale dynamics are still mainly balanced, but ageostrophic terms start to

play a role. The submesoscale regime can be characterised by the dimensionless

numbers, introduced below.

Spiral eddies, as mentioned in the previous section, are restricted to the upper ocean

and are among submesoscale dynamics. Conditions in the ML coincide in large parts

with the criteria which are typically used to define submesoscale dynamics (which

does not mean there is no submesoscale dynamic below the ML).

In the following part we want to focus on a differentiation between submesoscale

and mesoscale regimes by means of the non-dimensional Richardson- and Rossby

number. By varying different parameters in the numerical simulations they will be

adjusted to those conditions.

For submesoscale conditions the relative vorticity (ζ = ∂xv− ∂yu) has to be at least

of the same order as the planetary one (f), hence quantifying the importance of the

Coriolis force in the observed process. This leads to Rossby numbers (Ro) of:

Ro = ζ

f
∼ O(1) (1.1)

Analogue we can introduce the Richardson number (Ri), which indicates the impor-

tance of vertical shear with respect to stratification. In the submesoscale range the

buoyancy frequency (N) and the vertical shear
(
∂uh

∂z

)
has to be of the same order.

The subscripted h denotes the horizontal components of velocity. This leads to Ri

of:

Ri = N2
(
∂uh
∂z

)−2

∼ O(1) (1.2)

Whereas typical values for mesoscale dynamics are Ro � 1 and Ri � 1. From Ro

∼ Ri ∼ 1 (for submesoscales) one can conclude that the planetary vorticity still

plays an important role but is not as dominant as in the mesoscale range, where

quasi-geostrophy can be assumed. From Ri ∼ 1 we can conclude that vertical and

horizontal processes have to be considered, in contrary to the mesoscale range which

is assumed to be mainly 2-dimensional with diminishing vertical velocities.
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1.3. Introduction into Theory

Conservation of Ertel potential vorticity

The theoretical argument for cyclone-anticyclone asymmetry is based on the con-

servation of Ertel potential vorticity (EPV) (Eldevik and Dysthe, 2002)

Q = − 1
ρ0

(ξ + f) · ∇ρ (1.3)

In a stable stratified state we can always assume Q > 0, with static instabilities

rising otherwise. Assuming conservation of potential vorticity (DQ
Dt

= 0) and using

the thermal wind equation (1.4 and 1.5)

f
∂v

∂z
= − g

ρ0

∂ρ

∂x
(1.4)

f
∂u

∂z
= g

ρ0

∂ρ

∂y
(1.5)

we obtain following inequality

ρ0Q ' −
g

ρ0f
|∇Hρ|2 − (f + ζ)∂ρ

∂z
≥ 0 (1.6)

this leads to a lower boundary for the z-component of the relative vorticity ζ

f + ζ ≥ 0 (1.7)

while no such boundary exists for positive values. The above mentioned argument

was not devised by Eldevik and Dysthe (2002) but it is their main argument for

cyclonic dominance in the submesoscale range.

Using the thermal wind equation in an argument for cyclone-anticyclone asymmetry

in a submesoscale instability process might not be a completely valid approxima-

tion, because it uses the geostrophic balance. Furthermore the argument assumes

conservation of EPV, although the ML is forced for example through buoyancy loss

or gain.

Cyclostrophic balance

In this section a differentiation between mesoscale and submesoscale cyclones and

anticyclones by means of the different force balances is presented. Equation 1.8 rep-

resents the balance of centrifugal, Coriolis and pressure force in cylindric coordinates.

13



1. Introduction

Gradient-wind balance

−v
2

r
− fv = − 1

ρ0

∂p

∂r
(1.8)

with v the orbital velocity, r the vortex radius, p the pressure, ρ0 the reference den-

sity and f the Coriolis parameter.

Now we introduce a scaling of equation 1.8 with v̂− the scaled orbital velocity v, r̂−

horizontal length scale, f̂− Coriolis parameter− and p̂− the pressure pertubation

scale.

Scaled gradient-wind balance

v2

r

v̂2

r̂
− fvf̂ v̂ = − 1

ρ0

∂p

∂r

∂p̂

∂r̂
(1.9)

Now we devide by fv and with the assumption of a dominant geostrophic balance

the Coriolis force term and the pressure force term are equal and thus after deviation

one. If we now introduce the global Ro = v
rf

equation 1.9 looks the following

−Rov̂
2

r̂
− f̂ v̂ = − 1

ρ0

∂p̂

∂r̂
(1.10)

The importance of the third term, the Centrifugal force, depends on theRo. Mesoscale

dynamics are associated with low Ro (Ro � 1) and hence the Centrifugal force is

neglectable. Therefore the geostrophic balance (equation 1.11) is an appropriate sim-

plification to describe mesoscale vortices. In the submesoscale regime Ro ≈ O(1)

and thus the Centrifugal force becomes as important as the Coriolis force and the

pressure force.

Geostrophic balance

−fv = − 1
ρ0

∂p

∂r
(1.11)

The force balances in mesoscale vortices are depicted in the upper part of figure

1.2. Assuming equal pressure perturbations and velocities for low and high pressure

systems, pressure force and Coriolis force are identical in both pressure systems, only
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1.3. Introduction into Theory

acting in opposed directions. This results in equal sized cyclonic and anticyclonic

vortices for low and high pressure anomalies, respectively.

For vortices with Rossby number of O(1) no term of equation 1.8 is negligible. The

centrifugal force is always directed outward of a rotating pressure system. In a

low pressure system it is thus balancing partly the inward directed pressure force,

contrary to a high pressure vortice of intermediate size. Here the centrifugal force

and the pressure force are both directed outward and have to be balanced by the

Coriolis term. This leads to higher orbital velocities for high pressure vortices of

same size and pressure anomaly as for low pressure vortices, or equivalently to larger

anticyclones for same pressure anomalies and orbital velocities (compare figure 1.2).
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1. Introduction

Rossby number << 1

−1
ρ0

∂ p
∂ r

−1
ρ0

∂ p
∂ r

v v

fv

fv

Rossby number ~ 1

v2

r
v2

r

−1
ρ0

∂ p
∂ r

−1
ρ0

∂ p
∂ r

fv

fv

v

v

Figure 1.2.: Balance between the different terms of equation 1.8, after Cushman-Roisin

and Beckers (2011) chapter 18. For the larger mesoscale dynamics (Ro� 1) in the upper

part and for the smaller submesoscale dynamics (Ro = O(1)) in the lower part.
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1.3. Introduction into Theory

Structural differences of mesoscale and submesoscale eddies

The different structure of vortices in dependency of the divergence of the flow field,

was already introduced by Okubo (1970). In a non-divergent flow field vortices have

to build closed circulation patterns, called vortices (compare 1.3). Spirals can only

evolve in a divergent flow field. Divergent flow fields are associated with enhanced

vertical velocities, that transport downward (upward) the converging (diverging)

water. It is well known that mesoscale dynamics are assumed to be 2-dimensional

Figure 1.3.: Different structures of eddies, in dependence of the divergence of the flow field,

after Okubo (1970)

with negligible vertical velocities, while submesoscale dynamics are associated with

enhanced vertical velocities. Additionally this can be concluded from the vorticity

equation (1.12) derived as follows from the inviscid horizontal momentum equations

(β−effects are neglected).

Du

Dt
− fv = − 1

ρ0

∂p

∂x

∣∣∣∣∣·
(
− ∂

∂y

)

Dv

Dt
+ fu = − 1

ρ0

∂p

∂y

∣∣∣∣∣·
(
∂

∂x

)
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1. Introduction

Taking the curl of the horizontal momentum equation reveals:

∂u

∂x
+ ∂v

∂y
= − 1

f

D

Dt

(
∂v

∂x
− ∂u

∂y

)
(1.12)

Using the continuity equation (−∂w
∂z

= ∂u
∂x

+∂v
∂y

) and the relative vorticity (ζ = ∂v
∂x
−∂u
∂y

)

equation 1.12 becomes the following:

−∂w
∂z

= − 1
f

Dζ

Dt
(1.13)

The left hand side of equation 1.13 gives the change of vertical velocity with depth.

The term on the right hand side of equation 1.13 is small in mesoscale regimes,

leading to small ∂w
∂z

. In contrary in submesoscale dynamics the advective derivative

of ζ (right hand side of equation 1.13) is not neglectable in submesoscale dynamics,

leading to larger ∂w
∂z

.

Thus we are expecting vortex structures to evolve in mesoscale simulations and spi-

ral structures in submesoscale simulations.

1.4. Hypothesis

Based on the introduced previous studies and arguments, this thesis tries to further

investigate the cyclonic dominance in ML baroclinic instabilities.

To realise this, the transition between mesoscale and submesoscale processes (char-

acterised by typical Ri and Ro) is investigated with respect to cyclone-anticyclone

occurrence.

In principle there seem to be two possibilities for cyclonic dominance. First option

would be a qualitative difference already in the beginning of the instability process,

i.e. less anticyclones evolve. The second possibility is that anticyclones get unstable

at some stage of the process and thus more cyclones are to be observed. Nevertheless

the main question of this thesis is the following.

Why do submesoscale ranges exhibit an asymmetry of cyclones and anticyclones,

whereas mesoscale eddies feature a more symmetric distribution?

We assume that structural and spatial discrepancies of cyclones and anticyclones in
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1.4. Hypothesis

the different dynamical regimes are responsible for this asymmetry. To fortify this

hypothesis, numerical simulations of baroclinic instability processes in mesoscale,

intermediate and submesoscale regimes have been performed. To confirm the ex-

pected behaviour of baroclinic instabilities to convert available potential energy into

eddy kinetic energy, the energy developement over time is considered . Afterwards

temperature and velocity fields are presented to give a rough overview of the struc-

tural discrepancies in the different dynamical regimes. Length and time scales and

depth structure of perturbation velocity and buoyancy, predicted by linear stability

analysis, are compared with the emerging instabilities in the simulations. Further-

more they are set into relation with observations of length and time scales, for the

particular regimes, to confirm that the simulated instabilities represent the processes

we want to investigate further.

The importances of geostrophic and ageostrophic velocity components are considered

seperately to verify the arguments of different sizes for cyclones and anticyclones in

submesoscale regimes from the Gradient Wind Balance (section 1.3).

Afterwards the Okubo-Weiss-parameter is introduced to identify eddies. Using the

Okubo-Weiss-parameter the structure of the vertical velocity and relative vorticity is

associated with the eddies, verifying the structural differences of eddies in divergent

and non-divergent flow fields (compare section 1.3). This leads us to our main hy-

pothesis, that due to different force balances in mesoscale and submesoscale regimes

the size of cyclones and anticyclones is the same in mesoscale dynamics, while larger

anticyclones and smaller cyclones evolve in submesoscale ranges (section 1.3). In the

larger anticyclones horizontal gradients are weaker than in smaller cyclonic eddies.

Associated with the enhanced gradients in cyclonic regions are higher vertical veloc-

ities. This implies that cyclonic eddies form spiral structures, whereas anticyclones

feature lower vertical velocities and cannot develope spiral structures.
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2. Model description and Methods

For the numerical simulation the idealised python Ocean Model (pyOM) was used,

as described in Eden (2011). The model equations and a description of the set-up

and the initial conditions can be found in the following chapter. An overview of all

realised experiments and varied parameters can be found in table 2.2.

The second part of this chapter consists of a short description of linear stability

analysis for submesoscale conditions, which will be used in various contexts.

2.1. Model Equations

In the pyOM the Navier-Stokes-equations, density- and volume conservation equa-

tions in Boussinesq-approximation are solved. In this case also the hydrostatic

approximation is made (which is valid in the submesoscale range to O (Ro2H/L);

(Thomas et al., 2008)) and constant f is assumed:

∂u

∂t
= fv − ~u · ∇u− ∂p

∂x
+ Fx

∂v

∂t
= −fu− ~u · ∇v − ∂p

∂y
+ Fy

0 = −∂p
∂z
− b

∂b

∂t
= −∇ · (~ub) +Kh∇2

hb+Kv
∂2b

∂z2

∇ · ~u = 0 (2.1)

where pressure p and buoyancy b are scaled with the constant reference density ρ0.

Fx and Fy contain the horizontal and vertical harmonic and biharmonic friction

terms. For the presented simulations only harmonic friction is used. Kh and Kv

denote the horizontal and vertical diffusivity, respectively. The horizontal diffusion
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2. Model description and Methods

was realised by a quicker advection scheme.

The discretisation of the variables is on an Arakawa-C-grid, with p and b centered

in the middle, u, v and w are placed at the eastern, southern and upper side of the

grid. The boundary conditions are chosen as follows. At the surface the rigid lid

boundary condition is applied, while for the lower boundary a flat bottom is used.

In x-direction we assume periodic boundary conditions, whereas the boundaries are

closed in y-direction. At the meridional boundaries and the bottom noslip conditions

apply.

2.1.1. Parameter analysis to distinguish between submesoscale

and mesoscale dynamics

In this section the reader will find a short summary about the chosen parameters,

which qualitatively define the submesoscale and the mesoscale dynamics. Therefore

a scaling of the equations of motion has to be applied, as done by Brüggemann

and Eden (2012) (personal communication). This leads to a set of equations scaled

with the non-dimensional parameters Ro = U
ΩL , Ri = N2H2

U2 and the aspect ratio

δ = H
L

, where U denotes horizontal velocity scales, Ω the Coriolis parameter, L

horizontal length scales, N2 the vertical buoyancy gradient and H vertical length

scales. Assuming now that horizontal length scales are at the order of the Rossby

radius leads to Ri = 1
Ro2 , leaving only two independent parameters that can be

varied to achieve the different dynamics. In submesoscale dynamics Ro and Ri

are assumed to be O(1), furthermore a larger aspect ratio δ is expected, while for

mesoscale conditions Ro � 1 and Ri � 1 and a smaller aspect ratio δ are valid

assumptions.

In accordance to this, the parameter for the different experiments are chosen as

listed in table 2.3. The Coriolis parameter is set to 10−4 s−1 for all simulations,

representing a typical mid-latitude value. The geostrophically balanced background

velocity U gives the typical horizontal velocity scale and is set to 0.2 ms−1 in all

regimes.

From the given Ro and δ and the number of discretised gridpoint the domain size
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2.1. Model Equations

and resolution given in table 2.2 can be calculated. Furthermore all parameters to

initialise the model can be calculated as follows.

Parameter Calculation

L U
ΩRo

H δL

Ri 1
Ro2

N
√

RiU2

H2

M0 −sign(U) · Ro
δ
· Ω2

dx L
nx

dy L
ny

dz H
nz

Table 2.1.: Calculation of all further parameters required to initialise the numerical simu-

lations from given Ro, δ, U0 and Ω

2.1.2. Set-up

For experiments 1, 2, 4 and 5 in both horizontal directions 256 gridpoints and 80

vertical layers are discretised. Furthermore one lower resolution experiment (3)

is shown, since some results can be seen more obviously in this simulation. The

resolution and the used viscosities of each experiment can be seen in table 2.2. The

width and length of the model domain are chosen such that four to seven initial

pertubations can grow.

For the submesoscale regime two different types of buoyancy gradients are re-

alised. In the first case a linear gradient is simulated, thus one can compare it more

easily to the mesoscale and the intermediate experiment. The second simulation is

initialised with a hyperbolic tangent shaped buoyancy gradient, which fits better the

sharpened horizontal buoyancy fronts and the vertical buoyancy structure of a ML.
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2. Model description and Methods

exp Scale resolution [m] gridpoints viscosity

horizontal vertical horizontal vertical horizontal vertical

1 & 2 submesoscale 250 1 256 80 40 7 · 10−5

3 submesoscale 625 2.5 128 40 19.5 6.25 · 10−5

4 mesoscale 1.25 · 104 12.5 256 80 1.5 · 103 4 · 10−4

5 inter 1.25 · 103 2.5 256 80 90 1.5 · 10−4

Table 2.2.: Resolution, discretisation and viscosity for all presented experiments

Since this structure is not representative for mesoscale conditions, in the mesoscale

and the intermediate case only linear gradient simulations have been performed.

2.1.3. Initial conditions and realised experiments

The initial conditions for experiment 2 can be seen in figure 2.1. In the left figure

(a) surface temperature (colour) and velocity (arrows) are shown for the first time

step, while the right figure (b) shows an along-stream section of the domain.

The domain is preconditioned with a lateral buoyancy gradient as well as a geostroph-

ically balanced zonal jet. All simulations are realised on a f-plane, thus no spatial

variation of the Coriolis force is possible. Furthermore all experiments are unforced,

i.e. are spin-down experiments. See below at table 2.3 for details about parameter

variations. In vertical direction the density stratification is given by the Brunt-

Väisälä frequency N. Equivalently the horizontal buoyancy gradient is given by M0.

Furthermore a normal distributed random perturbation is applied on the buoyancy

field of the whole domain.
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2.2. Linear stability analysis

a

b

Figure 2.1.: Initial temperature (color) and velocity (arrows) for the submesoscale simula-

tion (experiment 2 in table 2.3), at the surface in (a) and for an along-stream section in

(b).

exp scale buoyancy gradient N U0 Ro Ri f0 δ

type dT
dz

[◦C/km] [1/s] [m/s] [1/s]

1 submesoscale nonlinear max 0.37 0.002 0.2 - - 1 · 10−4 0.04

2 submesoscale linear 0.13 0.0025 0.2 1 1 1 · 10−4 0.04

3 submesoscale linear 0.10 0.0025 0.2 0.8 1.56 1 · 10−4 0.04

4 mesoscale linear 0.01 0.01 0.2 0.02 2500 1 · 10−4 0.01

5 inter linear 0.05 0.005 0.2 0.2 25 1 · 10−4 0.02

Table 2.3.: Realised experiments and the implemented parameters, defining different dy-

namical regimes. For explanations concerning the chosen parameters see section 2.1.1

2.2. Linear stability analysis

In this part the linear stability problem for submesoscale regimes will be introduced,

followed by a description for what purpose these analysis will be used.

The following set of equations in the Boussinesq-approximation (the pressure term

25



2. Model description and Methods

related to sound waves in the continuity equation is kept for later use here) are used

together with an f-plane approximation.

∂u

∂t
+ ~u · ∇u− fv + fhw = −∂p

∂x

∂v

∂t
− ~u · ∇v + fu = −∂p

∂y

∂w

∂t
+ ~u · ∇w − fhu = −∂p

∂z
− b

∂b

∂t
+ ~u · ∇b = 0

c−2
s

∂p

∂t
+∇ · ~u = 0 (2.2)

These equations are linearised for a background velocity ~u, buoyancy b and pressure

p, in the form xi = X0 +x′, where ~U0 = (U0, 0, 0). Afterwards a waveansatz is made

again for ~u, b and p of the kind xi = xi,0(z)exp i(wt − kx − ly), which leads to an

z-depending eigensystem of the following form ωa(z) = M(z)a(z).

This eigensystem can be solved numerically and eigenvectors and eigenvalues for

each z-level are obtained. From the eigenvectors, vertical structure functions for ~u,

b and p can be derived, while the eigenvalues can be used to calculate the fastest

growing perturbation in dependency of the wavenumber.

In a zonal channel it is assumed, that the fastest growing wave is not propagating in

meridional direction. Thus the dependency of the fastest growing mode is calculated

only in dependency of the zonal wavenumber.

The vertical eigenvectors (structure functions) give the relative amplitude of the

considered property with depth. The total amplitude can not be derived directly

by Linear Stability Analysis. Nevertheless the relative amplitude can be scaled

with the typical time and length scales, given by the maximal growth rate and

the fastest growing wavenumber. The complete solution can then be calculated as

xi(x, z) = |a(z)| sin(kmaxx− ωmaxt+ arg(a(z))).

The submesoscale growth rate in dependancy of the scaled zonal wavenumber is

shown in figure 2.2. The maximum growth rate of the blue curve is used to obtain

a parameter independent time measurement and all time dependent developments
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2.2. Linear stability analysis

Figure 2.2.: Growth rate as a function of the scaled zonal wavenumber for submesoscale

conditions (experiment 2 in table 2.2). The black curve shows the inviscid growth rate,

while the blue curve represent the growth rate predicted for the simulation with the friction

mentioned in table 2.2.

in this thesis are given in growth rates. The blue curve reprents the growth rate

expected for the simulation, while the black curve show the growth rate for inviscid

conditions. The predicted length and time scales as well as the depth structures of

buoyancy and velocity perturbation are used to verify that the simulated instabilities

correspond with observed submesoscale and mesoscale eddies.

The theory and the numerical code for the Linear Stability Analysis was provided

by Prof. Dr. Carsten Eden (pers. communication).

27



2. Model description and Methods
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3. Results

In this chapter selected model runs, mainly one submesoscale, one mesoscale and

one intermediate simulation, will be presented, analysed and compared. The subme-

soscale results, if not stated different, refer therby to experiment 2 (compare table

2.2 and 2.3). Additionally some results from two other submesoscale simulations are

shown, one with a non-linear buoyancy gradient (experiment 1 in table 2.2) and a

lower resolution run (experiment 3 in table 2.2).

The chapter begins with a consideration of the phases of the instability process in

section 3.1, therefore the time dependent behavior of kinetic and potential energy

is shown, as well as representative plots of temperature and velocity fields. The

length- and time scales as well as the structure of the developing instabilities are

compared with the results of a Linear Stability Analysis (LSA) in section 3.2. There-

fore amongst others the results of a spectral density estimate of the kinetic energy

are used, to confirm that the simulated instabilities are representative for observed

ones and can be used to investigate the main hypothesis.

Time series of Ri and Ro are used to characterise the dynamical regimes. Thereby

Ro ≈ Ri ≈ 1 represent submesoscale dynamics, while Ro � 1 and Ri � 1 char-

acterise mesoscale regimes. To examine the question of cyclonic favour, statistical

properties of the local Rossby number are presented in section 3.3.

To give an estimate, which terms of the equations of motions play a decisive role

in the different regimes, the ratio between geostrophic and ageostrophic velocity

components is illustrated.

Afterwards eddies are identified using the Okubo-Weiss-parameter (OK) to give

qualitative answers concerning the surface signature of eddies in the different dy-

namical regimes. Furthermore structure of vertical velocity, vorticity and pressure

perturbation can be associated in this way, with eddies.
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3. Results

3.1. Phases of the process

To give an overview of the process first the evolution of kinetic and potential energy

with time is shown. Furthermore temperature and velocity fields at characteristic

stages of the process are presented for the different regimes.

The development of energy with time is shown only for the submesoscale regime,

because no major differences exist for the different regimes; all simulations hold the

same characteristic phases, marked in figure 3.1. We introduce an universal time

scale, the growth rate predicted by LSA, to obtain a parameter independent time

measurement (theory in section 2.2).

Maximal growth rates for each regime are calculated in section 3.2. In this way the

time axis for all regimes is very similar, while the mesoscale simulation covers three

years, whereas the submesoscale experiment is simulated only over 50 days.

Eddy Kinetic Energy (EKE) is calculated as
∫ 1

2(u′2 + v′2), where x′ denotes the

deviation from the zonal mean x. The total potential energy (PE) is given by∫
b · dz, with b - buoyancy and dz- depth increment. The available potential energy

(APE) is calculated as difference between minimal possible potential energy (MPE)

and PE. MPE in this case is the state with the lowest possible potential energy.

Therefore all buoyancy values are sorted ascendingly (b′) and a new depth incre-

ment dznew = dx·dy·dz
Lx·Ly

is calculated. MPE is than given by
∫
b′ · dznew.

Baroclinic instabilities are assumed to convert APE to EKE. Thus we can expect

an increase in EKE during the instability process with a simultanious decrease of

APE. This is in good agreement with the energy time series of the simulation in

figure 3.1. Total Kinetic Energy (KE) increases strongly during the beginning of

the instability process, reaching its maximum after 25 growth rates and decreases

when no new eddies are formed. Responsible for this is the increasing EKE, while

only few energy is transferred to the mean flow (not shown) by the instabilities.

The total Potential Energy (PE) decreases at the same time, when the KE starts

increasing, after about ten growth rates (compare 3.1). The decrease in PE comes
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3.1. Phases of the process

1

2

3

a

b

Figure 3.1.: Kinetic and potential energy for the submesoscale simulation. (a) Total Kinetic

Energy (red) and Eddy Kinetic Energy (black) are shown. The arrows mark characteristic

stages of the process (for description see text below). (b) Total Potential Energy (blue)

and Available Potential Energy (green).

from a decrease in the APE. The effect of baroclinic instabilities to flatten isopycnals

can well be recognised in figure 3.1 b, leading to APE values near zero at the end of

the instability process. When no APE is left (after approximately 30 growth rates)

EKE is on highest level and afterwards the instability process stops (spin-down ex-

periments). Characteristic stages of the instability process can be recognised from

this development of EKE and APE and following snapshots of diverse parameters

are taken at the marked points. We define the time before EKE increases and APE

decreases as the initial linear phase (begin to first arrow in figure 3.1 (a)), the tur-

bulent instability process (first to second arrow) and the decaying phase (second

arrow to third arrow).

The following figures 3.2 and 3.3 show snapshots of surface temperature and ve-

locity fields for each simulation and each phase of the process. The left figures (a,

31



3. Results

a b c

d e f

g h i

Figure 3.2.: Surface temperature fields in a submesoscale (left), intermediate (middle) and

mesoscale (right) simulation. (a,d,g) for the initial linear phase, (b,e,h) for the turbulent

phase and (c,f,i) for the decaying phase
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3.1. Phases of the process

d and g) are snapshots from the submesoscale simulation, in the middle (b, e and

h) represent intermediate scale dynamics, while the right figures (c, f and i) show

the corresponding temperature and velocity of the mesoscale simulation. The upper

most figures (a-c) represent the end of the initial linear phase (compare arrows in

figure 3.1), the middle ones (d-f) correspond to the turbulent instability process,

while the lower most (g-i) temperature and velocity fields represent the decaying

phase.

Different patterns of temperature can be observed for the meso- and the subme-

soscale regime already at the end of the linear phase, when the wave starts breaking

(3.2 (a-c)). The breaking of the wave is already asymmetric in the submesoscale

simulation. On the warm side spikey and long perturbations separate, while on

the colder side the perturbations are rounded and expanded. Later on (d-f), in the

submesoscale simulation the structure of the temperature perturbations is filament-

like, contrary to the mesoscale case, where the eddies form a more closed circulation

pattern, in the intermediate case a mixture between both of these structures can be

observed. At this point eddies of all simulations have already fully evolved. This

can be recognised from the high velocities as well as from the turbulent pattern of

the temperature field, where no longer a clear wave pattern is visible (in the sub-

mesoscale simulation this is not entirely true, because the process starts at different

times in the domain, thus in the southern part of the domain the wave structure is

still visible). While in the mesoscale case warm and cold eddies, of equal size, sep-

arate from the meandering temperature field, in the submesoscale simulation only

colder eddies separate in the warmer surrounding.

The cold perturbations are associated with cyclonic movements, as can be seen in

figure 3.3 (a,d and g). One anticyclone is evolving at this snapshot, but stays not

stable, gets influenced and finally disbanded by the surrounding cyclonic spirals.

In the intermediate simulation both, cyclones and anticyclones evolve but the flow

field is dominated by cyclones. In the mesoscale case both, cyclones and anticyclones

are found in equal number (figure 3.3 (f)). The last figures (3.2 and 3.3 (g,h and i))

show lower velocities again and a break down of the eddies. In the submesoscale
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a b c

d e f

g h i

Figure 3.3.: Surface velocity fields in a submesoscale (left), intermediate (middle) and

mesoscale (right) simulation (a,d,g) for the initial linear phase (b,e,h) for the turbulent

phase (c,f,i) for the decaying phase. The colour gives the amplitude of the horizontal

velocity, the arrows the direction.
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3.1. Phases of the process

perturbation and the region where the cold water originates from is visible, rep-

resenting the spiral structure. Whereas the cold and warm perturbations in the

mesoscale and the intermediate simulation are already completly uncoupled from

their origin. The range of surface temperature is clearly decreased, due to the eddy

activity, which deminished horizontal temperature gradients by restratifying the

temperature front.

The colorbars of the different simulations are not the the same, because of different

ranges. The scaling of the velocity arrows is equal within one experiment, but dif-

fers between the different experiments. The ratio of the vector length is (5:3:3) for

(submesoscale: intermediate: mesoscale).

In figure 3.4 temperature of an across-stream section of the submesoscale simula-

tion is depicted to visualise the frontal collaps, initialised by baroclinic instability.

Figure (a), (b) and (c) represent the initial, the turbulent and the deacying phase,

respectively. In the initial phase the isopycnals are still nearly vertical. The ed-

dies convert the APE into EKE by restratifying these vertical gradients, leading to

nearly horizontal isopycnals in the decaying phase (c). The change of vertical to

horizontal isopycnals by baroclinic instabilities is also observable in mesoscale and

intermediate experiments (not shown).
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a

b

c

Figure 3.4.: Submesoscale: Temperature of an along-stream section for the initial phase

(a), the turbulent phase (b) and the decaying phase (c)
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3.2. Linear stability analysis predicts submesoscale instabilities

3.2. Linear stability analysis predicts submesoscale

instabilities

To predict length and time scales and the depth structure of the instability process,

a linear stability analysis is applied (compare section 2.2). For the LSA we used

the same background conditions (e.g. background velocity, horizontal and vertical

buoyancy gradient and friction). The results of the LSA are set into relation with

the simulated results and length and time scales from observations, to confirm that

the simulations represent the instability processes we want to investigate. The cor-

responding length and time scales of the simulation represent always the end of the

initial linear phase.

The predicted submesoscale length scale of LSA is presented in figure 3.5 a, distur-

bances around the scaled wavenumber 0.86 will grow fastest and thus dominating

the wave field. This scaled wavenumber corresponds to a wavelength of 1.7 km.

The wavenumber is scaled with the initial length scale L0 = N ·H
f

of each simula-

tion. To compare this result with length scales in the simulation a 1D Fast Fourier

Transformation (FFT) has been performed, for the end of the initial linear phase.

On the KE of each zonal section a FFT has been applied, calculating afterwards

the mean of all zonal sections and its standard deviation. The result for the surface

layer is depicted in figure 3.5 b. Also shown is the Rossby radius Rd = N ·H
fπ

(green

line), which is 640 m for the presented regime. This is a reasonable value for a

ML Rossby radius of deformation. For the bottom layer the spectrum appears very

similar (not shown) while in the intermediate layers (not shown) no distinct peak

is visible, which is due to low horizontal velocities at mid depth (compare figure

3.8). The dominant scaled wavenumber is 0.98, corresponding to a slightly longer

wavelength (≈1.9 km) than the predicted one. This is due to the fact, that only

discrete values of wavenumbers are possible (restricted by the domain size) and the

predicted wavelength lies in between two realisable wavenumbers.

The standard deviation of the mean of all along-stream section wavenumber spectra

is as high as the mean itself. One reason for this is the different starting time of the
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a b

c

d

Figure 3.5.: Submesoscale: (a) Growthrate in scaled wavenumberspace, resulting from a

linear stability analysis. The black curve shows the inviscid growth rate, while the blue

curve represents the growth rate predicted for the simulation with friction. (b) Wavenumber

spectrum of KE for initial linear phase (c) Integral length scale and mean wavenumber (d)
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3.2. Linear stability analysis predicts submesoscale instabilities

instability process, at different sections. This problem occurs also in the mesoscale

regime and is illustrated and discussed in detail in figure 3.6 (b). Due to the high

standard deviation of the KE wavenumber spectrum the calculated length scales

are not reliable and therefore additionally the integral length scale and the mean

wavenumber are shown in figure 3.5 (c). They are calculated as follows and defined

by Olbers et al. (2012).

L = 3 · π
4

∫
k−1E(k)dk∫
E(k)dk (3.1)

k = 1
E0

∫
k · E(k)dk, with E0 =

∫
E(k)dk. (3.2)

The integral length scale (L) starts with values around 1.8 km, increasing steadily,

reaching values of 10 km at the end of the simulation. The same behaviour is

observable for the mean wavenumber (compare 3.5 (d)), which is decreasing contin-

uously with time, which is decreasing continuously with time , somewhat fluctuating

during the decaying phase staying at small wavenumbers. From this we can assume

that an upscale transfer of energy takes place, with growing length scales during

the instability process. Though for a more detailed analysis it would be necessary

to consider energy fluxes, which is not part of this thesis. The integral length scale

and the mean wavenumber are consistent with the results of LSA.

In figure 3.6 (a) the predicted scaled wavenumber (1.2) and next to it in (b) the

dominant wavenumber (1.18) of the mesoscale simulation is depicted. The standard

deviation (red curve) is as high as in the submesoscale case and exceeds the mean

(black) in some points. This can be explained by the fact that the instability process

starts at the northern boundary of the domain. Thus calculating the mean of all

zonal wavenumber spectra, has a high variance because the waves are already in

different phases of the instability process, i.e. some waves have already broken. In

figure 3.6 (c) the blue lines show KE of the ten southern most sections, while the

red lines are the neighbouring northern sections. The blue lines feature only one

wavelength, resulting in only one main peak in the wavenumber spectrum below (d),
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f

g

Figure 3.6.: Mesoscale: (a) Growthrate in scaled wavenumber space, resulting from a linear

stability analysis. The black curve shows the inviscid growth rate, while the blue curve

represents the growth rate predicted for the simulation with friction. (b) Wavenumber

spectrum of KE for initial linear phase. (c) KE for selected along-stream sections and

appendant wavenumber spectrum (d). (e) Mean wavenumber spectrum of blue curves in

(c). (f) Integral length scale and (g) mean wavenumber
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3.2. Linear stability analysis predicts submesoscale instabilities

while for the sections in red already a mixture of different wavelengths is observable.

In subfigure (e) the mean wavenumber spectrum of only ten neighbouring sections is

shown. The standard deviation is clearly lower, but the dominant wavenumber (1.18)

indicates the same, corresponding to a wavelength of 118 km. This matches well

with the calculated integral lengthscale in (f), starting with values of 75 km ending

up with about 300 km. This development is also observable in figure (g), which

depicts the mean wavenumber. The integral length scale and the mean wavenumber

are in good agreement with the results of LSA and the dominant wavelength of the

wavenumber spectrum of KE.

The same parameters for the intermediate experiment are depicted in figure 3.7.

The predicted fastest growing wavenumber is 1.3 (a), well matching the dominant

wavenumber in the model run, which is 1.37 (b). Furthermore it stands out that

the standard deviation is clearly lower than its mean value. In the intermediate

simulation, the instability process arises at all along-stream sections at the same

time (which was already observable in the surface temperature fields in figure 3.2

(b)). The main peak in the wavenumber spectrum corresponds with a wavelength of

7.6 km, matching well the initial values of the integral length scale (c), which ends

up with values of about 40 km.

In all experiments the predicted length scales are in very good accordance with the

actual arising one in the simulations. In the intermediate and mesoscale regime the

integral length scale grows strongly during the linear phase (up to 10 growth rates)

and continues growing slightly till the end of the simulation. In the submesoscale

experiment the integral length scale grows strongly far beyond the linear phase, but

does not continue growing afterwards. This might be either due to different growth

rates, or due to a limitation by the domain size. The length scales of the mesoscale

regime (O(100 km)) and the submesoscale regime (O(1 km)) are in accordance with

typical eddy sizes associated with this regimes (e.g. Thomas et al. (2008)).

From theory ((Eady, 1949) and (Stone, 1966)) we know, that the fastest growing

wave in mesoscale ranges should be 1.6·L0 and slightly below 1.6·L0 in submesoscale

ranges (black curves in figure 3.5-3.7 (a)). The values predicted here, are distinctly
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a b

c

d

Figure 3.7.: Intermediate: (a) Growthrate in scaled wavenumberspace, resulting from a

linear stability analysis. The black curve shows the inviscid growth rate, while the blue

curve represents the growth rate predicted for the simulation with friction. (b) Wavenumber

spectrum of KE for initial linear phase. (c) Integral length scale and mean wavenumber

(d)
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3.2. Linear stability analysis predicts submesoscale instabilities

lower (blue curves in figure 3.5-3.7 (a)). The reason for this is that the referred

theory is inviscid, while friction is applied in the simulation. Normally friction

should be chosen such that only length scales smaller than the fastest growing one

are influenced, which was not possible due to stability reasons of the numerical

simulations. Stability could be achieved also with a higher resolution, implying a

smaller time step, which has not been realised, due to time-consuming simulations.

In all three simulations a second peak in the wavenumber spectrum is visible. This

peak is located near the scale of the Rossby radius. This second peak might be the

ageostrophic mode described by Stone (1970).

In figure 3.8 (a, c, e, g) the structure of perturbation velocity and buoyancy is shown

for submesoscale background conditions. The horizontal velocity components have

between four and five maxima and minima at the surface and eastward shifted by

90◦ at the lower boundary. Absolute values are minimal at mid depth. This is

more pronounced for the zonal velocity component, while absolute values are higher

for the meridional velocity component. The vertical velocity has a maximum of

absolute values at mid depth and decreases to the surface and the bottom. A slight

intensification towards bottom and surface of absolute values can be recognised

for buoyancy, with a minor westward shift of maxima and minima at the bottom.

The corresponding parameters of the simulation are from an along-stream section

of the southern boundary of the model domain (≈ 10km) and shown in figure 3.8

(b, d, f, h). The same structure of intensified absolute values at the bottom and

the surface is characterising horizontal velocity and buoyancy, with the same east-

and westward shifts in horizontal velocity and buoyancy, respectively. The vertical

velocity has maximal values at mid depth, representing the baroclinic structure of

the instabilities. In the simulation five minima and maxima show up, which means

the predicted wavelength is slightly larger than the one, which is growing fastest in

the simulation. The reason is that the predicted fastest growing wave length does not

fit in the domain, thus a slightly different wave length is growing in the simulation,

which might lead to the difference of simulated and predicted depth-structure.

The results of the LSA and the corresponding parameters of the simulation does

43



3. Results

a b

c d

e f

g h

Figure 3.8.: Submesoscale:Along-stream section of zonal velocity (a,b), meridional velocity

(c,d), vertical velocity (e,f) and buoyancy (g,h). For the results of a LSA in (a), (c), (e)

and (g) and for the numerical simulation after 10 growth rates from the southern boarder

of the model domain in (b), (d), (f) and (h).
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g h

Figure 3.9.: Mesoscale: Along-stream section of zonal velocity (a,b), meridional velocity

(c,d), vertical velocity (e,f) and buoyancy (g,h). For the results of a LSA in (a), (c), (e)

and (g) and for the numerical simulation after 10 growth rates from the center of the

model domain in (b), (d), (f) and (h).
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Figure 3.10.: Intermediate: Along-stream section of zonal velocity (a,b), meridional velocity

(c,d), vertical velocity (e,f) and buoyancy (g,h). For the results of a LSA in (a), (c), (e)

and (g) and for the numerical simulation after 10 growth rates from the center of the

model domain in (b), (d), (f) and (h).
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not match as well, as in the lower resolution runs, or as in the mesoscale and inter-

mediate scale run. This can especially be seen in the simulated buoyancy structure,

which is broadest at the bottom and reducing to the surface, while it is constant in

LSA.

For the given mesoscale conditions the LSA predicts six maxima and minima per-

turbations, while the simulation shows 6.5 wavelength (compare figure 3.9). The

presented along-stream sections of the simulation are located in the centre of the

model domain. The amplitude of the LSA predicted perturbations is about a fac-

tor of two lower, except for the zonal velocity, where it is one magnitude smaller.

Compared to the submesoscale regime the amplitudes are two orders of magnitude

smaller, whereas the total velocity was higher (compare figure 3.16) in the mesoscale

simulation.

For the intermediate conditions LSA predicts between seven and eight minima and

maxima for the given domain size (compare figure 3.10 (a, c, f and g)). Actually

seven maxima and minima are developing during the simulation (figure 3.10 (b, d, f

and h), the presented along-stream sections are located in the centre of the model

domain) in u and b perturbations, while eight are growing in v and w perturbations.

The structure looks very similar to the predicted ones, though in this case the pre-

dicted amplitudes are slightly higher than the realised ones. In the simulation the

maxima and minima of u-velocity at the surface are more pronounced than the one

at the bottom.

Generally it can be said, that the predicted structure of perturbation velocity and

buoyancy are recognisable, but non-satisfying for the submesoscale simulation, while

it matches obviously the structures in the intermediate and mesoscale experiments.

One possible reason is that the predicted fastest growing wave length does not fit in

the domain, thus a slightly different wave length is growing in the simulation, which

might lead to the difference of simulated and predicted depth-structure. Only in the

submesoscale simulation a different size between maximum and minimum perturba-

tions is observable. The positive perturbations of zonal velocity are narrow at the

surface, whereas the negative perturbations are broader, which cannot be predicted
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by this linear theory.
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3.3. Occurrence of cyclones and anticyclones in the

different dynamical regimes

In chapter 1.3 the possibility to define submesoscale and mesoscale conditions by

means of the Ri and Ro was described. To verify that all simulations stay in the

predefined regimes until the instability process starts, mean, variance and values

above (below) a submesoscale |Ro| = 1 and Ri = 10 are presented in this chapter.

Furthermore we can conclude from Ri and Ro whether the system has shifted to

a different regime after the instability process. For a quantitative estimate of the

occurrence of cyclones and anticyclones distributions of Ro for different depth and

time steps are shown, as well as the skewness of the distribution.

To confirm the enhanced gradients and thus the major importance of the advection

terms in submesoscale dynamics, ageostrophic and geostrophic flow components are

presented separately, as well as time development of the mean balanced mode.

To address the question of different structures in different dynamical regimes, the

Okubo- Weiss parameter (OK) is introduced to analyse only the regions defined as

eddies. Vertical velocity, pressure perturbation and vorticity are shown, in order to

associate characteristic pattern with the eddies.

3.3.1. Rossby and Richardson number

The submesoscale experiments are started with initial conditions of Ro = Ri = 1.

To verify that the regime stays in submesoscale ranges when the instability process

starts figure 3.11 shows the number of all values above a threshold in the entire

3-dimensional domain, given by the absolute value of local |Ro| (|ζ/f | ≥ 1) and Ri

(N2/(∂u/∂z)2 ≤ 1) (figure 3.11 (a)). This values of Ro and Ri where chosen as a

threshold consistent with our definition of submesoscale dynamics. Values are nor-

malised by the total number of gridpoints. The difference of global ( U
ΩL) and local

Ro ( ζ
f
) is responsible for the initial zero values of Ro. When the instability process

starts (compare 3.1) after around 10 growth rates, also the number of gridpoints

larger than the threshold Ro increases to values of about 3%, decreasing during the
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decaying phase again to 0 %. While the Ri is at submesoscale values at 50 % of

all gridpoints in the beginning, decreasing to values of 10 %, after the maximum

of the process has passed at about 30 growth rates. Therefor we conclude that the

experiment is in a mesoscale range after the instability process is finished.

The local Ro implies also information about the rotational sense. Positive Ro rep-

resent positive vorticity and thus cyclones, while a negative Ro implies negative

vorticity values and thus anticyclonic motion. Therefor some further calculations

are done only for Ro. In figure 3.11 (b) and 3.11 (c) the mean positive and negative

Ro with its standard deviation, and the skewness of the distribution of local Ro

are shown respectively. The positive mean (maximum is 0.22) exceeds slightly the

negative one (maximum is 0.19) and the variance of positive Ro is clearly higher,

while the negative standard deviation stays nearly constant. The higher positive

variance indicates that more positive extreme values do exist, than negative ones.

However no dominance can be determined from negative and positive mean values,

since no information about the number of positive and negative Ro is available.

The skewness is regarded to determine a favour for cyclonic or anticyclonic motions

and is defined as follows.

The skewness is the 3rd central moment of a distribution. It is calculated as
1
n

∑n
i=1(xi − x)3

( 1
n

∑n
i=1(xi − x)3/2 (3.3)

Zero skewness in the beginning indicates that initially no qualitative difference of

cyclonic and anticyclonic motion exists. The skewness increases steeply during the

linear phase, which might be an artefact of the adjustment of the unbalanced ran-

dom pertubation. During the turbulent phase the skewness varies around a value of

1.4 and decreases again to values near zero at the end of the simulation. The skew-

ness is positive during the entire simulation, representing the expected dominance

of cyclonic motion.

For the mesoscale simulation only mean (3.12 a) and skewness (3.12 b) of the distri-

bution of Ro are shown, because even at the maximum of the instability process Ro

(Ri) above (below) the threshold occur with a commonness of less than 0.001%. The
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a

b

c

Figure 3.11.: Submesoscale: (a) Number of gridpoints with values of |Ro| ≥ 1 and Ri ≤ 1,

normalised by the total number of gridpoints. (b) Mean positive and negative Ro with its

standard deviation. (c) Skewness of the Ro distribution.
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a

b

Figure 3.12.: Mesoscale: (a) Mean positive and negative Ro with its standard deviation.

(b) Skewness of the Ro distribution.
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a

b

c

Figure 3.13.: Intermediate: (a) Number of gridpoints with values of |Ro| ≥ 1 and Ri ≤ 1,

normalised by the total number of gridpoints. (b) Mean positive and negative Ro with its

standard deviation. (c) Skewness of the Ro distribution.
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positive and negative mean of the Ro distribution show nearly the same form with

maximal values one magnitude lower than in the submesoscale experiment (positive:

0.03, negative: -0.03). In contrast to the submesoscale simulation, the variance of

the positive mean resembles the negative one. The skewness behaves the same as

in the submesoscale case but with distinct lower values (about a factor of four).

Opposed to the submesoscale regime, the skewness becomes negative at the end of

the simulation.

The same curves can be seen for the intermediate experiment in figure 3.13. The

number of values above the threshold Ro (figure 3.13 (a)) makes up 2.5%. For the

Ri the values reach about 1.2%, while in the submesoscale case still 20% are below

the threshold Ri. The positive and negative mean of Ro lies around 0.2, with a

slightly higher positive mean and a higher variance than for negative Ro. The skew-

ness of the distribution of Ro is positive during the entire instability process and

becomes negative only for the last few timesteps. The skewness features values of

the same range as in the submesoscale simulation. The unexpected high skewness

values during the linear phase, as in the submeso- and mesoscale simulation, are not

observable here.

Furthermore in figure 3.14 the distribution of local Ro in the submesoscale simula-

tion can be seen for different time steps and depth layers. A bootstrapping method

was applied to identify mean and standard deviation of the distribution of local

Rossby numbers. The procedure is to equate each data point with a number pro-

duced by a random number generator between zero and one. All values above the

median of all random numbers are taken to be one of the samples we need to make

up our bootstrap data set. Afterwards the distribution is calculated. This proce-

dure was applied 100 times, and from all distributions the mean distribution and its

standard deviation are calculated.

The black lines are the calculated mean from the random samples, the coloured

lines gives the standard deviation for each mean. After seven growth rates (a) the

distribution is still almost symmetric, only for the topmost layer a slight dominance

of positive values is observable. After 13 growth rates (b) the skewness of the distri-
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Figure 3.14.: Submesoscale simulation: Distribution of Ro ( ζf ) for different stages of the

process and for different layers. (a) - initial linear phase, (b) and (c)- turbulent process

and (d) - decaying phase. The black line is the respective mean of the distribution of the

topmost layer (red), the intermediate layer (blue), the deepest layer (green) and of all

layers (yellow), the colored lines give the standard deviation.
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c

Figure 3.15.: Distribution of Ro ( ζf ) for different layers. (a) Intermediate simulation, (b)

mesoscale simulation, (c) submesoscale with nonlinear buoyancy gradient (experiment 1

in table 2.3), all representing the turbulent phase. The black line is the respective mean

of the distribution of the topmost layer (red), the intermediate layer (blue), the deepest

layer (green) and of all layers (yellow), the colored lines give the standard deviation.
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bution is clearly visible, with positive values up to Ro = 5, while negative values do

not undercut -1 by much. From equation 1.7 we know that negative values should

not fall below −1, this lower boundary for Ro is clearly visible here, while positive

Ro can develop freely. However locally negative Ro might undercut this value, as it

happenend in the lower resolution simulations (not shown). Equation 1.7 assumes

conservation of EPV, which is not completely fullfilled in the presented simulations

due to friction (development of EPV is not shown). In addition the thermal wind

equation is used to derive equation 1.7, which might be not completely valid for

submesoscale regimes.

Furthermore a surface intensification of the skewness of the distributions can be

recognised. The topmost layer (red curve) has distinct higher positive values, than

the intermediate (blue) and the deepest layer (green), while the distributions are

nearly equal for negative Ro. After 22 growth rates (c) the positive Ro values are

decreasing, coming again to a nearly symmetric distribution after 34 growth rates

(d). The maximum of the distribution of the surface layer is shifted from zero to-

wards slight negative values after the linear phase ended. It means in effect, that

more slightly negative Ro than positive Ro exist.

The reader can find the mesoscale distributions during the turbulent phase in figure

3.15 (b). Inherently, the range of Ro is here completely different. Both, negative

and positive Ro do not exceed absolute values of one. Nevertheless a slight skew-

ness during the turbulent phase of the instability process towards positive values is

observable. The reason is that Ro approaches values of one, which implies that per

definition submesoscale dynamics (chapter 1.3) occur here, leading to the observed

slight skewness. Again a depth dependency is recognisable, while it is in this case

intensified towards surface and bottom, where as the intermediate layers have lowest

values. This structure corresponds well with the LSA predicted minimum pertur-

bation velocity values at mid depth.

The distribution of Ro for the intermediate simulation can be seen in figure 3.15

(a). Again a surface intensification of the skewness of the distribution is visible. At

the maximum of the instability process (after 21 growth rates; figure 3.15 (a)) the
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positive Ro reaches values of 2, while negative values do not undercut Ro = −1.

In figure 3.15 (c) the distribution of Ro for the submesoscale experiment with the

non-linear buoyancy gradient is presented (experiment 1 in table 2.3). The positive

Ro reaches distinct higher values than in the submesoscale experiment with a linear

buoyancy gradient. As already mentioned in the introduction, the non-linear struc-

ture represents the conditions of a ML, with its sharpened gradients better. Thus

we can expect an even higher asymmetry between cyclones and anticyclones than

mainly presented here, by the linear submesoscale experiment.

Summing up the analysis of the dimensionless numbers, all simulations remain in

their initial regimes at least during the instability process. At the end of the simu-

lation the submesoscale and intermediate run feature mesoscale characteristic with

low (high) Ro (Ri), which strengthen the suggestion of the previous section, that

an upscale transport of energy towards larger scales take place. The intermediate

simulation resembles the submesoscale run more closely, with nearly as high mean

values, but less extrem values.

We can determine a dominance of positive Ro for the submesoscale experiments,

representing the expected cyclonic favor of this regime, while only a slight asymme-

try is visible in the mesoscale simulation. The intermediate case stays in between,

with a slight dominance of positive Ro. Even if positive Ro do not reach values of

1 (as it is the case in the mesoscale simulation, or at the end of the submesoscale

run) a skewness towards positive Ro is observable, which means the lower boundary

given through equation 1.7 cannot be the only reason for a cyclonic dominance.

3.3.2. Geostrophic and ageostrophic flow components

To quantify the importances of the individual terms of the equations of motion in

the different dynamical regimes this section depicts surface patterns of ageostrophic

and geostrophic flow components separately, as well as time development of the

mean balanced mode and the relation between mean geostrophic and ageostrophic

KE.
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The total geostrophic flow component (ugeo) is the sum of the geostrophically bal-

anced background flow (uback) and the geostrophic part of the perturbation (u′
geo),

ugeo = u′
geo + uback.

u′
geo is calculated as:

u′
geo = −1

fρ0
· ∇hp

′ (3.4)

The subscripted h denotes the horizontal component and p′ the perturbation pres-

sure. The ageostrophic component is then defined as uageo = u′ − ugeo.

In figure 3.16 the geostrophically balanced and ageostrophic velocity components

are illustrated after 15 growth rates (a-c) and after 25 growth rates (d,e). The

enhanced geostrophic and ageostrophic velocities occur at the same regions where

the spiral eddies are located. The ageostrophic velocity (b) is a factor of two lower

than the geostrophic component (a). The ageostrophic velocity seems to rotate pre-

dominantly anticyclonic, as seen in figure 3.16 (e) and even better visible in the

intermediate experiment 3.18 (b).

In order to exclude that the ageostrophic velocity is always anticyclonic the ageostrophic

relative vorticity is shown in the Appendix (figure A.2 (a)), which features cyclonic

and anticyclonic regions.

Divergence equation

D

Dt

(
∂u

∂x
+ ∂v

∂y

)
− fζageo = Ah

(
∂2

∂x2 + ∂2

∂y2

)
∂w

∂z
+ Av

∂3w

∂z3 (3.5)

Ah and Av are the horizontal and vertical viscosities.

To determine which term of equation 3.5 is dominating the ageostrophic relative vor-

ticity (ζageo) the Coriolis term and the friction term (figure A.2 (b)) are calculated

separately. The difference between the latter both is then defined as the residuum

(tendency and advection terms together (figure A.2 (c)). ζageo is of the same order

as the residuum, whereas friction features slightly lower values. In the centre of

the spirals however the friction is enhanced and thus also influencing ζageo. Friction

always acts against the total velocity. Thus the friction might partly explain, why
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ζageo is anticyclonic in the cyclonic spirals. But further investigation would be nec-

essary to determine the dependence of ζageo to the tendency, the advection and the

friction terms.

In subfigure (c) the geostrophic velocity is shown underlayed by the pressure pertur-

bation. One equal sized high and low pressure system is observable, as well as six

further, but distinct smaller, low pressure systems. The magnitude of the pressure

anomalies is the same for positive and negative systems, but the size is different.

This points the dominance of cyclonic low pressure systems out again, as well as

the different sizes of cyclones and anticyclones, postulated by the theory introduced

in chapter 1.3. In anticyclonic regions no enhanced ageostrophic velocity is visible.

The ageostrophic component acts mainly against the geostrophic one, leading to

lower total velocities compared to geostrophic ones.

The geostrophic velocity of the mesoscale simulation (figure 3.17 (a)) reaches values

of 1.4 ms−1 and follows mainly three low pressure systems, two large and one small

high pressure system (3.17 (b)). The structure of enhanced ageostrophic velocity

(3.17 (c)) is not that clearly associated with eddy regions, as in the submesoscale

experiment. The ageostrophic velocity reaches maximal values of 0.3 ms−1.

In the intermediate simulation geostrophic velocity (figure 3.18 (a) does not exceed

1.2 ms−1. At this point of time three low and one high pressure systems of equal size

have evolved (compare figure 3.18 (b)). The structure of the ageostrophic velocity

in (c) is like in the submesoscale case associated with the eddies. The maximal

ageostrophic velocity slightly exceeds values of 0.3 ms−1.

In all three regimes the ageostrophic velocity reaches the same maximal values of

0.3 ms−1 – only the pattern differs – while the geostrophic and total velocity (the

latter is not shown here) differs about a factor of four between the mesoscale and

the submesoscale regime and a factor of three between intermediate and subme-

soscale dynamics. From this it follows that the relation between geostrophic and

ageostrophic flow components is different in the particular experiments. This re-

veals the following relation between geostrophic and ageostrophic components in

the submesoscale, intermediate and mesoscale regime (1:1/3:1/4). To quantify this
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Figure 3.16.: Submesoscale: Velocity components after 15 (a,b and c) and after 25 growth

rates (d and e) at the surface. Geostrophic velocity (a and d), ageostrophic velocity (b and

e) and pressure anomaly with overlayed geostrophic velocity (c)
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Figure 3.17.: Mesoscale: Velocity components after 19 growth rates at the surface.

Geostrophic velocity (a), ageostrophic velocity (b) and pressure anomaly with overlayed

geostrophic velocity (c)
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Figure 3.18.: Intermediate: Velocity components after 21 growth rates at the surface. (a)

Geostrophic velocity, (b) ageostrophic velocity and (c) pressure anomaly with overlayed

geostrophic velocity
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relation the time dependent importance of ageostrophic versus geostrophic motion,

the relation of ageostrophic KE to geostrophic KE and the mean balanced mode are

shown in figure 3.19.

The balanced mode (εbal) indicates the relative importance of geostrophic and ageostrophic

motions (Capet et al., 2008). If εbal is 0, the flow is totally geostrophic, while εbal ≈ 1

is associated with an highly unbalanced flow field.

εbal =
|∇ · (uH · ∇HuH)− fζ + 1

ρ0
∇2
Hp|

|∇ · (uH · ∇HuH)|+ f |ζ|+ | 1
ρ0
∇2
Hp|+ fζrms + | 1

ρ0
∇2
Hp|

(3.6)

Where uH denotes the horizontal velocity components, ζ the vertical component of

relative vorticity, ∇H the horizontal gradients, ρ the density, f the Coriolis param-

eter and p the pressure.

The relation between ageostrophic and geostrophic KE in the submesoscale regime

reaches a maximum of 0.15 (figure 3.19 (a)), while in the intermediate case (e)

the relation does not exceed 0.05 and in the mesoscale regime values of 0.005 (c).

This looks very similar for the balanced mode calculation. The maximal subme-

soscale value (b) here is 0.2, 0.02 in the intermediate simulation (f) and 0.015 in the

mesoscale run (d). The balanced mode shows very high values in the beginning in

all three simulations, which is probably due to the initially applied random pertur-

bation which is not geostrophically balanced. The balanced mode and the relation

between ageostrophic and geostrophic KE reveal the same different importance of

the ageostrophic flow component for the different regimes, as the snapshots of sur-

face ageostrophic and geostrophic flow components (figure 3.16-3.18).
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a b

c d

e f

Figure 3.19.: (a), (c) and (e) Ratio between ageostrophic and geostrophic kinetic energy.

(b), (d) and (f) Domain mean of the balanced mode (Skyllingstad and Samelson, 2012).

For the submesoscale simulation in (a) and (b), for the mesoscale simulation in (c) and

(d) and for the intermediate one in (e) and (f).
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3.3.3. Okubo-Weiss-parameter and eddy structure

The Okubo-Weiss-parameter (OK) is introduced to define eddy regions and is utilised

to make a qualitative statement about the eddy structure in the different regimes,

as well as about the associated vertical velocity and vorticity.

The OK gives the importances of vorticity versus shear and strain deformation, a

vorticity dominated region is an eddy (Okubo, 1970). The OK is calculated as:

OK = α2 + h2 − ζ2 (3.7)

with α = ∂u
∂x
− ∂v

∂y
(stretching deformation)

with h = ∂v
∂x

+ ∂u
∂y

(shearing deformation)

with ζ = ∂v
∂x
− ∂u

∂y
(relative vorticity)

The mean and the standard deviation for the whole domaine are calculated for each

timestep. An eddy is then defined as a region where OK ≤ −0.2std(OK) (which is

a common definition e.g. Emelianov et al. (2004)).

OK is an estimate for two-dimensional flows. We assume it to be still valid for sub-

mesoscale regimes, where vertical velocities changes are still one order of magnitude

lower than horizontal velocity changes (compare e.g figure 3.20 (e) and 3.21 (a)).

Possible problems may occur if the strain rate (
√
α2 + h2) is as high as the relative

vorticity (ζ) in the same spots. If this is the case the OK will approach values of

zero. In order to figure out if this is the case in the submesoscale regime we depict

the strain rate and the absolute value of relative vorticity in the Appendix (figure

A.1). The comparison reveals that in the tails of the spirals the strain rate and the

relative vorticity (ζ) are both large, while in the centre of the spirals only ζ reaches

high values. This is also the case in the mesoscale simulation (not shown), with the

difference that total values of the strain rate and the vorticity are lower. We conclude

from this, that the presented OK might sometimes underestimate the length of the

spirals, but can still be used to qualitatively associate vertical velocity and relative

vorticity with eddies. The OK of the submesoscale regime is depicted as well as

pressure perturbation, vertical velocity and vorticity in the regions defined as eddies

by the OK after 12 growth rates (figure 3.20 (a,b)) and after 15 growth rates (c-f).
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Figure 3.20 (a) and (c) show the OK normalised by 0.2 · std(OK), the blue regions

indicate vorticity dominated areas, hence eddies, while red values represent strain

and shear dominated areas. The darker the blue the more intensive is the eddy.

Already in the first shown figure, (3.20 a) a difference in the structure of cyclonic

and anticyclonic eddies can be recognised. While positive vorticity occurs in small,

filamentlike regions, but very intense, the structure of negative vorticity values is

more expanded but with lower absolute values. Adjecent to cyclonic regions always

a region of high shear dominance can be found (positive OK values). We like to

draw attention also to the smaller size of cyclonic eddies, compared to anticyclones,

in the initial phase (3.20 (b)). After 15 growth rates the cyclonic filaments are rolled

into a spiral, while anticyclones show a closed circulation pattern (compare figure

3.20 c and d). The anticyclones are still larger at this stage, but associated with

obvious weaker vorticity values (d).

Mostly vertical downward velocities are associated with the spiral eddies, while the

anticyclonic eddies have low absolute values of vertical velocities in the centre (fig-

ure 3.20 e). The positive and negative pressure perturbations in (f) have similar

amplitudes, but differ in their size.
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Figure 3.20.: Submesoscale: OK (a) and relative vorticity (b) with contours of eddies,

defined by OK after 10 growth rates at the surface, (c) and (d) the same as (a) and (b)

but after 15 growth rates, pressure pertubation (e) and vertical velocity (f) with contours

of eddies, defined by OK after 10 growth rates at the surface.
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Figure 3.21.: Vertical velocity with contours of temperature (a) and relative vorticity (b)

for a submesoscale lower resolution experiment (exp. 3 in table 2.3) during the turbulent

phase of the instability process at the surface

In figure 3.21 the vertical velocity with overlaying contours of temperature can be

seen in (a) and the corresponding vorticity (b) for the lower resolution submesoscale

experiment (experiment 3 in table 2.3). Clearly visible are the enhanced vertical

velocities associated with the concentrated temperature lines in the spiral structure,

while the rest of the domain, associated with anticyclonic vorticity possesses only

low values of vertical velocity. From figure 3.21 (b) the asymmetry of high absolute

vorticity values can be concluded. The positive maximal values are about 5 times

higher than the negative ones and concentrated in the spiral like patterns, while the

negative vorticity is distributed more widely over the whole domain.

We noticed that only one type of cyclonic spirals is evolving in the simulation,

whereas two different types are imaginable. This is illustrated in figure 3.22.

Dζ

Dt
= (f + ζ)∂w

∂z
(3.8)

With the utilisation of the vertical component of the vorticity equation (3.8 (Val-

lis, 2006) ) we can eliminate the both spiral types depicted on the right side of

figure 3.22. In Vallis (2006) this equation contains an additional term related to

the β− effect, which we neglected here. In the beginning of an instability process

69



3. Results

Figure 3.22.: The upper left schematic represents a convergent cyclonic spiral, the upper

right schematic represents a divergent cyclonic spiral, the lower left schematic represents

a divergent anticyclonic spiral and the lower right schematic represents a convergent anti-

cyclonic spiral. The upper and lower right spirals do not evolve (for explanation compare

equation 3.8).

we can assume the relative vorticity (ζ) to be small. The Coriolis parameter (f)

does not change the sign, thus we can directly relate the relative change of ζ to

the sign of the vertical velocity change with depth. In a downwelling region the

sign of ∂w
∂z

is positive, which directly leads to an increasing positive relative vorticity

ζ. Analogue upwelling regions can be associated with negative vorticity. Divergent

cyclonic spirals would lead to upwelling and thus a negative change of ζ, which leads

to a decrease of the original positive ζ (convergent anticyclonic spirals would lead to

downwelling and thus a positive change of ζ, which leads to a decrease of the original

negative ζ). From this we conclude that only cyclonic convergent and anticyclonic

divergent spirals are possibly self-energysing and thus evolving.

Figure 3.23 (a), shows OK after 15 growth rates for the mesoscale experiment. No

difference in the structure for cyclones and anticyclones is observable (b). Compared

to the submesoscale run the relative vorticity is distinctly lower (b). The associated
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Figure 3.23.: Mesoscale: OK (a), relative vorticity (b) and vertical velocity (c) with con-

tours of eddies, defined by OK after 15 growth rates at the surface.
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Figure 3.24.: Intermediate: OK (a), relative vorticity (b) and vertical velocity (c) with

contours of eddies, defined by OK after 17 growth rates at the surface.
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vertical velocity is mostly zero at the centre of the eddies and high in the surround-

ing (compare figure 3.23 (c)). This might be simply due to horizontal gradients or

due to some submesoscale activity existent in the mesoscale simulation (which was

already seen in the distribution of Ro).

The intermediate simulation appears similar to the submesoscale run, but with

lower OK values (figure 3.24 (a)). The vorticity is as high as in the submesoscale

experiment (b). The cyclonic regions are filamentlike, but not rolled into spirals.

Furthermore they are associated with enhanced vertical velocities (c), while the an-

ticyclones have lower vertical velocities.

The OK reveals different structures of the eddies in the submesoscale and the

mesoscale regime. Furthermore a clear difference between cyclones and anticyclones

becomes observable in the submesoscale dynamics. The cyclones are, at least in the

beginning, smaller but more intense, featuring the characteristic spiral like struc-

ture. Furthermore cyclones are always associated with enhanced downward vertical

velocities, whereas submesoscale anticyclones and mesoscale eddies feature nearly

zero vertical velocities in the centre.

In figure 3.25 the surface distribution of Ro after 27 growth rates is shown without

eddies, without anticyclones and without cyclones, defined by OK for the subme-

soscale experiment. All regions identified as eddies by OK have been subtracted

therefore from the domain, befor calculating the distribution. The remaining values

are separeted into cyclones and anticyclones by their vorticity (negative or positive).

The distribution is distinct different when subtracting the cyclones, but only a small

difference can be seen when substracting the anticyclones. The distribution with-

out all eddies is nearly normal distributed. This confirms again, that more positive

extreme high Ro exist than negative ones. Furthermore this extreme values are

actually associated with the eddy regions.
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Figure 3.25.: Submesoscale: Distribution of Ro( ζf ) after 27 growth rates in the surface

layer. Without eddies (red), with eddies (black), without cyclones (light blue) and without

anticyclones (green). Regions defined as eddies by the OK, are substracted from all values

for the red curve. Positive relative vorticity values in this eddy regions define cyclones and

negative relative vorticity in an eddy defined by OK represent an anticyclone.
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4.1. Reproducing baroclinic instabilities in numerical

simulations

We were able to reproduce the baroclinic instability process with an idealised box

model without topography and without forcing (spin-down experiment) for different

dynamical regimes, consistent with observed ones.

The energy development of all simulations is very similar, EKE starts rising when

the temperature and velocity field starts meandering, reaches its maximum when

the eddies are separating and declines when the eddies become weaker (spin-down

experiments). Thereby we can compare the different experiments at characteristic

stages of the process.

From the temperature fields we can already recognise distinct differences in the struc-

ture of the growing instabilities. In the submesoscale case eddies evolve only as cold

perturbations in warmer surrounding, while in the mesoscale regime both, warm and

cold eddies are found. The structure of the submesoscale eddies are filaments rolled

into a spiral, whereas the mesoscale circulation pattern is more closed and vortex-

like. The amplitude of horizontal velocity in the mesoscale simulation exceeds the

velocity of the submesoscale run. Vertical structure of buoyancy and horizontal and

vertical velocity, as well as length and timescales correspond to the ones predicted

by LSA. For submesoscale conditions the fastest growing wavelength found is about

1.9 km, growing to length scales of 10 km at the end of the simulation, correspon-

dent with typical observational data for submesoscale lengths (compare e.g. Munk

et al. (2000)). The maximal growth rate is 1.34 day−1, which is on the same order

of magnitude with growth rates calculated from measurements (e.g. Boccaletti et al.

(2007)).
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In mesoscale ranges, simulation and LSA reveal initial length scales of 75 km, ending

up with length scales of 300 km. The associated maximal growth rate of about 0.04

day−1 coincide with the interior mode of Boccaletti et al. (2007). In the intermediate

range the length scales are initially of the order of 7.6 km, growing to sizes of 40

km.

The depth structure of buoyancy and velocity predicted by LSA is similar to the

simulated structure in the submesoscale experiment, however it matches not that

well, as in lower resolution runs or as in intermediate and mesoscale simulations.

One reason could be the early breakdown of symmetry in the submesoscale exper-

iment, even before the perturbation structure predicted by LSA can fully develop.

Another reason is that the predicted fastest growing wave length does not fit in the

domain, thus a slightly different wave length is growing in the simulation, which

might lead to the difference of simulated and predicted depth-structure.

Neither can LSA predict an asymmetry between maximum and minimum pertur-

bations nor is an asymmetry visible during the linear phase in the simulated ones.

However we are not able to eliminate the possibility that a already in the beginning

of the instability process a qualitative difference between cyclones and anticyclones

exists.

Additionally to the predicted dominant wavenumber a second peak in wavenumber

space is observable for all three regimes. This could be either a subharmonic of the

dominant wave or the ageostrophic mode described by Stone (1970).

4.2. Verifying cyclonic dominance in submesoscale

dynamics

The developement of the dimensionless numbers Ro and Ri over time show that

all experiments represent the predefined dynamics. Nevertheless, when the pro-

cess comes in the decaying phase the submeso- and intermediate scale experiments

reaches Ro, Ri and length scales typical for mesoscale dynamics. The mean Ro and

also the fraction of gridpoints above (below) submesoscale Ro (Ri) are very similar
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for the submesoscale and the intermediate regime, while they are distinctly lower

in the mesoscale regime. However in the submesoscale experiment higher extreme

values are found in the distribution of Ro and the surface snap shots of vorticity.

Locally maximal values of Ro = 5 are found, while the intermediate Ro does not

exceed values of two, whereas mesoscale Ro stay below one.

The mean positive Ro features higher values than the negative mean in subme-

soscale and intermediate regimes, whereas positive and negative mean are equal

in the mesoscale simulation. The standard deviation of positive Ro in the subme-

soscale and the intermediate regime represents higher extreme values of positive

Ro (associated with cyclonic circulation). In the intermediate and submesoscale

ranges a surface intensification of extrem high values of Ro can be found, while in

the mesoscale regime high values occur at the bottom and the surface. All three

regimes have a positive skewed distribution of Ro, although the submesoscale skew-

ness exceeds the mesoscale one by about a factor of three. The initial zero values of

the skewness in all three regimes indicate, that no dominance of cyclones exists in

the beginning.

The enhanced dominance of cyclonic motion in submesoscale dynamics is confirmed

hereby and the simulations are thus suitable for further investigations concerning

structural and spatial differences between cyclones and anticyclones.

4.3. Different force balances in mesoscale and

submesoscale dynamics

The ageostrophic velocity component features the same order of magnitude in all

dynamical regimes, though in relation to the geostrophic velocity component, it is

significantly higher for submesoscale conditions. This was quantified with a maxi-

mal value of the relation between ageostrophic and geostrophic KE of 0.15 in the

submesoscale experiment, while the mesoscale relation does not exceed 0.005. This

represents the importance of ageostrophic flow components in the submesoscale dy-

namics, while it is neglictable in the mesoscale regime. Nevertheless the ageostrophic
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KE never exceeds the geostrophic one, and is thus not dominating. Furthermore the

structure of ageostrophic and geostrophic flow components was considered. In the

submesoscale and the intermediate regime high ageostrophic values can be always

associated with eddy regions. The ageostrophic velocity is anticyclonic in cyclonic

regions, as also seen in the simulation of Eldevik and Dysthe (2002). This might

be due to friction, which acts always against the total velocity, but further inves-

tigations would be necessary to figure the dependence of the ageostrophic relative

vorticity on the ageostrophic terms (friction, tendency and advection).

In contrast the mesoscale structure of high ageostrophic velocities cannot directly

be connected with the eddy regions or a dominant rotational direction.

The higher importance of ageostrophic flow components in the submesoscale regime

was confirmed, as well as the different size of the evolving negative and positive

pressure perturbations.

4.4. Enhanced vertical velocities and spiral structures

in submesoscale dynamics

To confirm the enhanced vertical velocities, which we assume to be responsible

for the strutural differences between cyclones and anticyclones in the submesoscale

range, the Okubo-Weiss-parameter (OK) was introduced to identify eddy regions.

The analysis of the eddies defined by OK and the associated structures of vorticity,

pressure perturbation and vertical velocity reveal, yet another time, distinct differ-

ences in the structure of eddies in the submesoscale and the mesoscale regime. In

the initial phase the structure of cyclonic eddies is filament-like for intermediate and

submesoscale simulations, while it is vortex-like in the mesoscale regime for cyclones

as well as for anticyclones. The submesoscale anticyclones are clearly larger, but

with lower absolute values of relative vorticity. Later on, the filaments are rolled into

spirals in the submesoscale experiments. The relative vorticity is about one order of

magnitude lower for the mesoscale experiment, compared to the submesoscale and
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the intermediate simulation. The vertical velocity is mainly zero in the center of

all mesoscale eddies and low in submesoscale and intermediate anticyclones, while

enhanced vertical velocities occur in submesoscale cyclones. There the vertical ve-

locity is directed mainly downward, i.e. the spirals are associated with a convergent

flow field. In all regimes the amplitude of positive and negative pressure anomalies

is of the same magnitude, but the size of low pressure systems is smaller than the

size of high pressure systems in the submesoscale and the intermediate simulation.

During the time of this thesis we performed a number of differnet simulations for

submesoscale and mesoscale regimes. We started with lower resolution simulations

and simulated experiments with slightly different initial conditions, furthermore sev-

eral simulations had to be repeated, due to computational problems and restarting of

the servers. All simulations revealed similar results to the presented ones. Although

the depicted results are not that representative as a statistical ensemble would be,

we think that our findings are no result of coincidence. However, to generalise the

main results of this thesis it would be convenient to analyse a statistical ensemble

of different simulations with same initial conditions.

4.5. Conclusion

The reported structural differences of vertical velocity, relative vorticity and pressure

anomaly for meso- and submesoscale dynamics, utilising the theory of cyclostrophic

balance (1.3) and the classification of velocity singularities in the divergence-vorticity

parameter space defined by Okubo (1970) and already mentioned in section 1.3 sup-

port our initial presented hypothesis.

In the mesoscale regime the geostrophic balance between pressure gradient force and

the Coriolis force leads to equal sized cyclones and anticyclones. Assuming equal

pressure perturbations (and the same Coriolis force) in the beginning, pressure force

and Coriolis force are balancing each other, resulting in equal velocitiy amplitudes

in low and high pressure systems, but in opposed directions. This is contrary to the
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submesoscale regime where the centrifugal force has to be taken into account, which

is always directed outward.

In a high pressure system the centrifugal force acts in the opposite direction as the

Coriolis force, leaving for the pressure force only to balance the difference between

the Coriolis force and the centrifugal force. In a low pressure system the centrifugal

force is also directed outward but in opposite direction as the pressure force. In this

case the pressure force has to balance both, the Coriolis and the centrifugal force.

When still assuming equal pressure and velocity perturbations in the beginning of

the instability process (which is given in our simulation, as could be seen from the

along-stream-sections of perturbation velocity and buoyancy, as well as from the

surface pressure anomalies in section 3.3.2) this leads to smaller length scales for

low pressure systems (cyclones). With equal pressure amplitudes the resulting pres-

sure gradient is higher, for smaller length scales, resulting in a higher pressure force.

This argument is well known from literature (e.g Cushman-Roisin and Beckers

(2011)) and observations, mainly from Meteorology (e.g. (Klein, 1958)), but has

not been applied to the cyclone-anticyclone asymetry of spiral eddies so far. The

presented results are in accordance with this theory. The cyclones found in the

submesoscale simulation were smaller in size, with enhanced pressure and velocity

gradients. We further found, that the enhanced horizontal gradients in cyclonic eddy

regions, are associated with enhanced vertical velocities (figure 3.20 (b) and 3.21).

This leads us now to the structural differences of divergent and non-divergent flow

fields. As shown in section 1.3, spiral structures of eddies are only possible when the

velocity field is divergent. In non-divergent velocity fields only closed circulation

patterns (called vortices) can evolve. It is well known that the mesoscale regime

is assumed to be 2-dimensional, with negligible vertical velocities, contrary to the

submesoscale regime, which is associated with enhanced vertical velocities.

Divergence and vertical velocities are associated parameters, i.e. in a non divergent

velocity field we have negligible vertical velocities, while divergence and convergence

lead to enhanced vertical velocities. The spiral structures occur only in divergent or

convergent velocity fields, thus they occur with enhanced vertical velocities.
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Now the known arguments of gradient-wind-balance and the structure of vortices

in divergent and non-divergent flow fields can be connected. The force balance in

submesoscale regimes leads to smaller cyclones. This also implies that horizon-

tal gradients of velocity and pressure are sharpened in cyclonic regions. Therefore

enhanced vertical velocities are associated with submesoscale cyclones. Enhanced

vertical velocities imply a non-divergent flow field and only in non-divergent flow

fields spiral structures of eddies can evolve. Some spiral pattern might be visible in

the mesoscale simulation because at the edge of mesoscale activity also submesoscale

variability manifests (which was for example seen in the distribution of Ro, where in

some few points Ro approaches values of one, implying by definition submesoscale

dynamics). Furthermore the two-dimensionality of the mesoscale regime is only an

assumption, whereas effectively also in mesoscale dynamics low values of vertical

velocity occur.
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a

b

Figure A.1.: Submesoscale: (a) Strain rate as defined in section 3.3.3 and (b) relative

vorticity at the surface, during the turbulent phase. Contours show the Okubo-Weiss-

parameter.
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a

b

c

Figure A.2.: Submesoscale: (a) Coriolis term in equation 3.5 (relative ageostrophic vortic-

ity, multiplied by f) , (b) friction term in equation 3.5 and (c) the residuum (advection and

tendency terms in equation 3.5) All figures are surface plots during the turbulent phase of

the instability process.
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